

Beth Zetter cyclotonroad

Stanford Energy Ventures Feb 13 2019

Overview

- What is techno-economic analysis, why/when to use it
- Value proposition in hard tech
- Widget tech vs. Process tech
- Case study: graphene membranes
- Methods to quantify cost and value (how to use it)

cyclotronroad

• Important metrics in energy and cleantech

Why do technoeconomic analysis?

VALUE > COST

Why should you care?

#1 Don't waste your time, your most precious resource.

Why should you care?

#2 Avoid dead ends and pivot early.

You may not get another chance spend other people's \$\$\$

Why should you care?

#3 Optimize R&D and product development to attack biggest cost/value drivers

In an early stage venture, the model is a connection point

Modeling is used differently as the venture moves forward

Pilot/commercial scale planning (design & engineering)

VALUE > COST

Where/how you quantify cost and value depends on the value proposition

All companies need to model cost

 \rightarrow For many, the value-side model (application) is also critical

Cost-Side Model

Antora – Grid storage Visolis - Chemicals Fervo – Geothermal Seeo – Batteries Cuberg – Batteries Noon energy – Grid storage

Value-Side Model

Cinderbio – Industrial enzymes Hybrid XL – Commercial vehicles Via Separations – Chem/Pharma/Food processes Astrileux – Semiconductor coatings Spark Thermionics – Small-scale power

Value Proposition in Hard Tech

Value proposition must do (at least) one of these

Where to crunch the numbers? Find the center of gravity of value, and focus there

Question:

Identify a customer for your product. Now imagine you work for that company.

What is the math you need to show to demonstrate to your company, quantitatively, that it will profit from adopting the new tech?

Two types of energy tech

Is your tech a widget or process tech?

Widget technologies in energy

- Batteries
- Solar panels
- Electrochemical devices

- → Bill of materials dominates commercial viability
- → Techno-economic models focus on design vs. performance

BERKELEY LAB

Source: https://en.wikipedia.org/wiki/Fuel_cell

Process technologies in energy

- Power production (from burning stuff)
- Fuels & chemicals production

- \rightarrow Heat, gas, & steam
- \rightarrow Large economies of scale
- → CapEx dominates commercial viability

BERKELEY LAB

.....

→ Techo-economic models focus on production cost

Combined Cycle Power Plant

Source: https://en.wikipedia.org/wiki/Integrated_gasification_combined_cycle

Case study: graphene membranes

Via Separations, a MIT graphene membrane startup

increase in graphene and graphene oxide nanofiltration articles since 2010

papers that claim to be scalable

papers that mention any quantitive cost analysis

4%

Joule

COMMENTARY

Six Degrees of Separation: Connecting Research with Users and Cost Analysis

Shreya H. Dave,^{1,2,*} Brent D. Keller,² Karen Golmer,² and Jeffrey C. Grossman^{1,2,*}

cyclotronroad

BERKELEY LAB

Value depends on where the membrane can operate

BERKELEY LAB

.....

Via needs two techno-economic models

Cost-Side Model

Cost of production: Membranes

Value-Side Model

Process model: Chemical X

TECHNOLOGY ABOUT PRESS CONTACT US

MOLECULAR FILTRATION FOR INDUSTRIAL PROCESSES

Building a model

Resources for getting started

📃 🕒 YouTube

techonomics 101

驻 FILTER

Techonomics 101 (What's your idea worth?) Techonomics by Cyclotron Road

Techonomics Overview • 4:04

1 Universal Law of Business • 4:09

VIEW FULL PLAYLIST (9 VIDEOS)

TECHONOMICS

Build the future physical world

Are you developing technology for commercial impact?

Here, you'll find:

- 1.5-minute videos on how to quantify the value of your technology
- 2. Free to download Excel models to learn from and hack
- 3. <u>Playthrough videos</u> Learn how to build your own models

Q

.....

Download example models https://sites.google.com/cyclotronroad.org/techonomics (or access through Youtube channel)

These spreadsheet models are free to use, download, and modify

BERKELEY LAB

A	В	С	D	E	F	G	н	1	J.	к
S	uper pe	rforma	nce frisbe	ee						
Can we make it for under \$6.00 and maintain performance?										
	P. J. J.					C 11 - 1		-	De di stad	
	Product spec	s & paramet	ers			Criteria		Target	Predicted	
Frisbee diameter 30			cm		Total material costs		\$6.00	\$6.24		
Frisbee height Green layer thickness		1.2	2 cm		Inertia, g-cm2		80,000-85,000	80,533		
		4.5 cm								
	Green layer n	naterial	SuperPower							
	Layer name	Tr	Density	Mat'l cost	Inner rad.	Outer rad.	Volume	Mass	Inertia	Layer cost
	-	cm	g/cm3	\$/kg	cm	cm	cm3	g	g-cm2	\$
	Blue	8.0	0.35	\$2.05	0.0	8.0	241	84	2,702	\$0.17

Simple cost-performance model

FOUNDER'S PLAYBOOK

Beta

cyclotronroad

PLAYBOOKS FILE TREE	search for topics like IP, team building, etc.	Q
		ତ ୦
Tech + Product 59		×
 01 - Product (PRD & Spec Sheet) 02 - Techno- Economic Modeling 28 		
 01 - Content - Cost Modeling 02 - Examples - Curated Cost Models 03 - Sector Specific Modeling 		
 03 - IP - Filing Strategy 5 04 - IP - Licensing 12 		

- 05 IP Foreign Filing Strategy
- 06 Product Market Analysis 3

BERKELEY LAB

	A B C D	E F G	H I	J K	L
1	Techno-economic mode	I - Polymer synthesis			
2	This is a model for a new super-polyr	ner synthesis method.			
3					
4	Process parameters		Financial results		
5	Production rate	500 t/yr	CapEx	\$2.46 MM	
6	Utilization	95.0%	OpEx less depreciation	\$3.58 /kg product	
7	Overall conversion (reactor yield)	95.0% of monomer	Revenue	\$7.00 /kg product	
8	Separation yield	98.0%	(Equipment size is within	cost correlation range.)	
9					
10					
10 11	Reaction parameters		Profitability metrics		
10 11 12	Reaction parameters Single pass conversion	4.0% of monomer	Profitability metrics All-in cost	\$4.01 /kg product	
10 11 12 13	Reaction parameters Single pass conversion Catalyst dosing	4.0% of monomer 0.0010 kg/kg monomer	Profitability metrics All-in cost Payback period	\$4.01 /kg product 2.8 years	
10 11 12 13 14	Reaction parameters Single pass conversion Catalyst dosing Reactor pressure	4.0% of monomer 0.0010 kg/kg monomer 5.0 bar	Profitability metrics All-in cost Payback period	\$4.01 /kg product 2.8 years	
10 11 12 13 14 15	Reaction parameters Single pass conversion Catalyst dosing Reactor pressure Reactor pressure drop	4.0% of monomer 0.0010 kg/kg monomer 5.0 bar 1.0 bar	Profitability metrics All-in cost Payback period	\$4.01 /kg product 2.8 years	
10 11 12 13 14 15 16	Reaction parameters Single pass conversion Catalyst dosing Reactor pressure Reactor pressure drop	4.0% of monomer 0.0010 kg/kg monomer 5.0 bar 1.0 bar	Profitability metrics All-in cost Payback period General co	\$4.01 /kg product 2.8 years osts Raw materials	
10 11 12 13 14 15 16 17	Reaction parameters Single pass conversion Catalyst dosing Reactor pressure Reactor pressure drop	4.0% of monomer 0.0010 kg/kg monomer 5.0 bar 1.0 bar	Profitability metrics All-in cost Payback period General co	\$4.01 /kg product 2.8 years osts Raw materials Waste	
10 11 12 13 14 15 16 17 18	Reaction parameters Single pass conversion Catalyst dosing Reactor pressure Reactor pressure drop Costs	4.0% of monomer 0.0010 kg/kg monomer 5.0 bar 1.0 bar	Profitability metrics All-in cost Payback period General co Other fixed	\$4.01 /kg product 2.8 years osts Raw materials Waste treatment	

Operating

labor

Other variable

costs

Depreciation

\$1,150 /t

\$1,050 /t

\$2,100 /t

\$72,000 /yr

\$0.11 /kWh

cyclotronroad

М

Ν

0

Р

A	В	С	D	E	F	G	Н	I	J	К	L	М	N
-		D.											

Tornado diagram sensitivity analysis

Settings	Worst	Expected	Best	Units	Reference
Utilization	90%	95%	98%	-	95.0%
Overall conversion	90%	95%	97%	of monomer	95.0%
Separation yield	95%	98%	99%	-	98.0%
Single pass conversion	3.0%	4.0%	7.0%	of monomer	4.0%
Catalyst dosing	0.0015	0.0010	0.0008	kg/kg monomer	0.0010
Reactor pressure	4.0	5.0	5.5	bar	5.0
Polymer price	\$13,500	\$14,100	\$14,600	/t	\$7,000
Monomer price	\$1,155	\$1,050	\$945	/t	\$1,050
Catalyst price	\$2,310	\$2,100	\$1,890	/t	\$2,100
Operator cost	\$76,000	\$74,000	\$72,000	/yr	\$72,000

Refresh Tornado

All-in cost , \$/kg

User instructions:

\$4.40

1. In 'Settings' table, enter best-case, expected-case, and worst-case values for each parameter.

Metric:

- 2. Select output metric from drop down menu below table.
- 3. Click 'Refresh Tornado' button.
- 4. Customize chart format if desired.

Plant economics

Key factors affecting economics

- Rate Increasing output with available infrastructure
- Yield More efficient conversion of inputs to product
- Utilization Uptime. Operates 24/7 for best economics

Rate

Rate

Cranking out dollar bills!

Economics of power generation are similar to other production systems

- Capital intensive
- Commodities lower cost is everything
- CapEx is critical

Key number in production plant investment decisions – "apples to apples"

\$CapEx / output capacity

\$/mgy

\$/kW

\$/MT/yr

\$/kWh/yr

fuels chemicals electricity battery manufacturing

Low heat flux, high CapEx constrains geothermal

Higher wind speeds at higher elevation

Yield

Yield = actual/potential product

Higher efficiency of solar panels

Utilization

If your customer is producing something and they are.... They want to...

Below Capacity → MINIMIZE COST

At/near Capacity → MAXIMIZE OUTPUT

Utilization of generation technologies

CAPACITY FACTOR (%)

Source: EIA Annual Energy Outlook

Cost per unit – back of the envelope method

PRODUCTION #/yr

Questions?

